
CF-ADSI: Control Flow Anomaly
Detection based upon Static

Instrumentation

a dissertation presented
by

Jerome M. Peyroutat-Basse
to

The Department of Security

in partial fulfillment of the requirements
for the degree of

Engineer Degree in Computer Science
in the subject of

Security and Network

Nagoya Institute of Technology
Nagoya, Japan
October 2018

©2018 – Jerome M. Peyroutat-Basse
All Rights Reserved

Thesis advisors: Shoichi Saito Jerome M. Peyroutat-Basse

CF-ADSI: Control Flow Anomaly Detection based
upon Static Instrumentation

Abstract

Embedded device manufacturer are nowadays continuously confronted to security
challenge. They will however find few security concept taking into account their strong
requirement in term of performance and safety, especially in themanufacturing, healthcare,
automotive and aerospace industry.
CF-ADSI attempts to provide an innovative model to detect malicious execution by
aggregating the cutting edge research on embedded security, secure cloud and anomaly
detection. This paper is based up the recent C-FLAT approach by Abera et al. (2016)
which allows to circumvent advanced attack such the Return-Oriented Programming
exploitation.
The CF-ADSI implementation reaches significant performance gain compare to C-FLAT
with 70% less overhead. Moreover, this approach allows to limit the usage of security
component such as HSM or TSM, thus reducing manufacturing variable cost. In return
for these enhancements, the overall fixed cost of CF-ADSI is higher in order to establish
the cloud and Big Data infrastructure.

iii

Contents

0 Introduction 1

1 Literature Review 3
1.1 Control Flow Attestation . 3

1.1.1 Design . 3
1.1.2 Control-Flow Attestation Report 4

1.2 Binary Instrumentation . 6
1.2.1 Dynamic Binary Instrumentation 6
1.2.2 Static Binary Instrumentation 7

1.3 Anomaly Detection . 7
1.3.1 Supervised and Unsupervised Anomaly Detection 8
1.3.2 Big Data Framework . 8
1.3.3 Log Data Collection . 9

2 System Architecture 10
2.1 Design . 10

2.1.1 Hypothesis . 10
2.1.2 System Overview . 11

2.2 Device Application . 13
2.2.1 PEBIL Instrumentation . 14
2.2.2 Shared Memory and Communication Program 16

2.3 SGX Cloud Server . 16
2.3.1 Untrusted Application . 16
2.3.2 Enclave . 16
2.3.3 Log File Collection . 17

2.4 Big Data Framework . 17
2.4.1 Distributed Database . 17
2.4.2 Analytic Engine . 18

3 Evaluation 20
3.1 Device Performance . 20
3.2 Analytic Engine Performance . 22

4 Conclusion 24

iv

A Application Code 26

B Test Environment 28

References 33

v

To Japan and its inhabitants that inspire my everyday life.

vi

Acknowledgments

I deeply thanks the Professor Shoichi Saito for assisting me duringmy stay at Nagoya
Institute of Technology. I am deeply indebted for having participating to the joint meeting
between the security department of Nagoya Institute of Technology and theRitsumeikan
University which was a wonderful experience.

This thesis will not have been possible without the keen help of Chikara Kato, Hiroki
Ogawa, Kenta Nishimura, Kiyofumi Okano and every student inmy laboratory for reaching
me out when I was struggling withmy Japanese. A special acknowledgement is directed
toward Shohei Komatsu who actively has participated to my studies.

The last word is addressed to my family and especially to my belovedmother for offering
me the opportunity to study in Japan and to fulfill my deepest dream.

vii

0
Introduction

The security of embedded system is one of the major challenge for both manufacturer
and security researcher. This is especially true for embedded system in the automotive,
healthcare and IoT industry with several practical exploitation exposed over the past
decade (Miller & Valasek, 2010; Kovelman, 2017; Hunt, 2016; Gayou, 2018; Frank,
2018; Zonenberg, 2016). Security in embedded system is particularly crucial because
it often participate in the device’s safety, and therefore to the user safety.
The technology progress in both the automotive and healthcare industry brings forward
the need for security in embedded device even further. Indeed, the emergence of
connected vehicule and the technology spreading in the medicine such as computer-
assisted intervention enlarge the attack surface for malicious agent (Koscher et al.,
2010; Checkoway et al., 2011; Rushanan et al., 2014).

Classic security solutions are however often incompatible with embedded system
because of resource limitation and stronger requirement imposed by the industry. Moreover,
to ensure the good implementation of security concept, the setting up of a Secure
Software Development Life Cycle (S-SDLC) is generally needed (Singh & Panda, 2018).
Nevertheless, the introduction of S-SDLC in organization takes time and thus future
development in the next years are likely to not implement strong security concepts. How
to offer an embedded system security model while limiting both the impact in resource
usage and deployment time ?

1

This paper takes as a starting point the work of Abera et al. which elaborate a remote
Control Flow ATtestation (C-FLAT) model for embedded system (Abera et al., 2016).
This model focuses on advanced attack taking advantage of control flow modification
to execute malicious code such as the Return-Oriented Programming (ROP) attack1.

First, we introduce the 3 major concepts used throughout our studies: control flow
attestation, binary instrumentation and anomaly detection. Second, we explicit our
overall design by both its underlying hypothesis and its architecture. The design is then
put into practical use by implementing it in a simple environment. Finally, the result of
our studies are evaluated and confronted to our design’s hypothesis.

1https://en.wikipedia.org/wiki/Return-oriented_programming

2

https://en.wikipedia.org/wiki/Return-oriented_programming

1
Literature Review

1.1 Control Flow Attestation

The foundation of this paper is the Control FLow ATtestation (C-FLAT) model which
enables remote attestation of an application’s control flow graph (CFG) (Abera et al.,
2016).

1.1.1 Design

To begin with, the controller generates the application’s CFGand calculate each possible
path within it. The result is stored in a measurement database in order to determine
later on the correctness of the application’s execution flow.

The C-FLAT model is based on a traditional remote attestation design with a nonce
challenge sent by the controller and a response sent by the application (Figure 1.1).
On one hand, the challenge is mainly used to prevent replay attacks. On the other
hand, the response contains both the attestation report and a signature to ensure the
attestation’s origin. The response’s signature is then verified as well as the attestation
report. The application is considered as trusted if both verification are passed.

3

Figure 1.1: Overview of C-FLAT (Abera et al., 2016)

1.1.2 Control-Flow Attestation Report

The attestation report is generated by retrieving a basic block’s identifier (e.g. starting
address), say N2, when entering a basic block and add it to a hash cipher. The
hash computed in the previous basic block, say H1, is also added to the hash cipher.
Therefore, the attestation report becomes H2 = Hash(N2,H1). The hash chain
enables to identify a specific path and to validate the executed flow.
Nevertheless, the generation of the attestation report includes 3 major challenges:
loops, break statements and call-return matching.

Loop: The main problem introduced by loops is that the number of valid attestation
report may grows exponentially if the application has a lot of loop (or nested loop).
This fundamentally affect C-FLAT’s security because the number of valid attestation
report must be statically low compared to the hash-space 1, otherwise the attestation
report of an invalid and valid execution flow may collide, i.e. have the same hash, thus
allowing an attack to occur.
In order to tackle this complication, a separate hash chain is computed when entering
a loop. By doing so, the number of valid hash is limited to the number of possible path

1number of possible hash

4

in the loop. As a loop may be repeated several time, the C-FLAT model keeps track of
the occurrence’s number of each hash in the loop. Moreover, to ensure that the loop is
executed at the right place, the hash computed right before the loop is also specified
in the attestation report.
A loop is thus authenticated by 3 components: the hash computed before entering the
loop, the hash computed inside the loop in a separate hash chain and the occurrence
of each executed path inside the loop.

In the Figure 1.2, the cfa_quote represents the current executed flow. Then, the hash
computed before the loop is registered as in the line 3. In the line 4, the executed path
inside the loop represented by a hash and its number of occurrence (682) is saved. It
is also possible to have several execution flow in a flow such as in the loop[004] in line
11.

1 [INFO] cfa_quote: 57 92 0f 9e 98 47 30 bb a5 f7 5d 2a dc 8a 7b 5f
2
3 [INFO] loop[000]: b3 c5 ca c4 6f dc 6a d0 4a 80 10 09 af a3 59 70
4 [INFO] path[000]: 97 78 fb fc 93 09 4e d7 ac 32 5d 65 eb 29 08 0c (682)
5 [INFO] loop[001]: eb 16 88 8a d2 3b c6 19 f9 01 94 5d ee cb 1c 13
6 [INFO] path[000]: b9 7d cf 8d 00 b6 5f 63 b3 7c 60 e4 e3 be 56 17 (1)
7 [INFO] loop[002]: 6d 05 6e b2 3a 27 1e 2b 78 3e f9 4c e3 a7 cb f8
8 [INFO] path[000]: 62 f7 b8 0b 65 4b de 35 c7 05 bc 28 06 43 11 6e (2)
9 [INFO] loop[003]: eb 16 88 8a d2 3b c6 19 f9 01 94 5d ee cb 1c 13
10 [INFO] path[000]: b9 7d cf 8d 00 b6 5f 63 b3 7c 60 e4 e3 be 56 17 (3)
11 [INFO] loop[004]: f5 77 b7 94 bd 6c 81 e2 2f 36 da ad cd df 56 6e
12 [INFO] path[000]: 67 c6 5e d4 18 13 02 bc 4a 5d 60 a0 16 85 f4 ed (9)
13 [INFO] path[001]: 78 19 af 09 0f d5 64 f4 39 b4 7a 0d 97 57 77 8c (2)

Figure 1.2: Attestation Report (Abera et al., 2016)

Break statements: Break statements must be considered as special loop exit. Indeed,
they directly leave the loop without going back to the conditional check. The hash
chain in the loop is thus extended to the targeted exit address. Therefore, the final
hash capture the fact that the loop terminated by a break statement toward a specific
exit address.

Call-returnmatching: Call and return instructions become a challengewhen a function
is called from different places (N2, N3) in the application as in Figure 1.3. In this case,
the functionmay return to N5 or N6. However, if the path calculation is not done carefully,
the path N2->N4->N6 may be seen as valid and thus lead to an attack.
In the C-FLAT model, an index is added to the call and return edge to identify which
return correspond to which call.

5

Figure 1.3: Overview of C-FLAT (Abera et al., 2016)

1.2 Binary Instrumentation

The implementation of a control flow attestation requires to retrieve basic block’s
identifiers. Binary instrumentation methods allow us to arbitrary insert assembly code
in the application’s binary. In the following section, we introduce two major concepts
used to instrument an application: Dynamic and Static Binary Instrumentation.

1.2.1 Dynamic Binary Instrumentation

The dynamic binary instrumentation analyses and executes callback routines as the
application is running. The instrumentation tool detects basic block and event to
be instrumented by monitoring the executed application. Developers define which
condition will trigger callback routines. If a basic block or a event passes the condition,
an user defined callback routine is called and the application is resumed once the
callback routine is finished. Most common toolkit to implement dynamic instrumentation
are Intel PIN2, DynamoRIO3, Dyninst4 and Valgrind5.

2https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
3http://www.dynamorio.org/
4https://www.dyninst.org/
5http://valgrind.org/

6

https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
http://www.dynamorio.org/
https://www.dyninst.org/
http://valgrind.org/

Pros

• Do not modify the targeted application

• Retrieve detailed information of the executed application

Cons

• Cannot instrument statically compiled language

• Have a significantly overhead both in time and memory because of the external
process attached to the application

1.2.2 Static Binary Instrumentation

The static binary instrumentation encompasses 2 approaches: the pre-compilation and
the post-compilation method. On one hand, the pre-compilation method analyses the
source code of the application and insert code blocks into the region to be instrumented.
For example, the instrumentation may be done by the compiler. On the other hand,
the post-compilation method analyses the compiled binary to find every methods.
Then, assembly blocks are inserted and the binary is rewritten. Most available toolkit
are issued from research such as PIN, UROBOROS and PEBIL (Luk et al., 2005;
Wang et al., 2016; Laurenzano et al., 2010). The toolkit Dyninst6 also offers static
instrumentation.

Pros

• Have a relatively small overhead compare to dynamic instrumentation

Cons

• Significantly modify the application’s binary

• Binary rewriting is arduous to implement

• Lack of detailed analysis such as run-time information

1.3 Anomaly Detection

The generation of the CFG and its analysis is one of the most challenging aspect in the
C-FLAT model. Nevertheless, anomaly detection methods may provide us solutions to

6https://www.dyninst.org/

7

https://www.dyninst.org/

avoid the CFG’s generation and its analysis. To investigate such paradigm, we consider
each attestation report generated as a log information, and thus direct our attention
toward anomaly detection in log file.

1.3.1 Supervised and Unsupervised Anomaly Detection

The 2 major theories in anomaly detection are supervised and unsupervised detection
(Omar et al., 2013).
A supervised detection requires data labeled as ”normal” or ”abnormal” in order to train
a classifier. The classifier is then used to evaluate whether a new input is unusual or
not. Data used to build the classifier are thus extremely decisive as they will influence
the anomaly detection system’s reliability.
Contrarily, an unsupervised detection do not use labeled data and instead presumes
that most of values are normal. The detection is done by identifying data that seems
to not fit the remainder of the data set.
These 2 techniques can also be combined to form a semi-supervised anomaly
detection. This method needs a ”normal” training data set in order to construct a model
representing the ”usual behavior”. Later on, the constructed model can modify itself by
using, for example, neuro-evolution and deep learning concepts (Arunraj et al., 2017).

1.3.2 Big Data Framework

Anomaly detection needs wide data set in order to be efficient. As one of our hypothesis
is that our system will handle a large number of device, we will be able to collect
enough data. However, this implies to have the required infrastructure to handle such
extensive amount of data. This is why different Big Data frameworks are considered in
order to design our system.

Although the research on Big Data is vivid, current Big Data solutions are still not mature.
Each Big Data solution has a different approach for specific goals such as real-time
analysis, simplicity of use, scalability or compatibility with existing system.
In our research’s context, most important criteria are the setup’s ease and the real-time
performance. On one hand, the setup’s ease ensure us to deliver a complete system
although lacking of experience in the Big Data field. On the other hand, the focus on
real-time performance ensure us to handle fast streams of incoming data.
To meet real-time expectation, NoSQL7 database solution such as MongoDb, HBase
or Cassandra are preferred for data storage (S & Mary, 2017), and Spark or Storm
are envisaged as analytic engine (Inoubli et al., 2018). Our investigation lead us to a

7also called ”non relational” database

8

complete and comprehensive guide to setup MongoDb with Spark that settle our choice
on MongoDb and Spark (Kalan, 2015).
The reader may thus recall that the choice of the Big Data Framework is based mainly
on the setup’s ease over performance and scalability.

1.3.3 Log Data Collection

The last step in order to design our log file anomaly detection is to collect data from log
file. Several solutions are envisaged such as Fluentd, Syslog-ng, Rsyslog and Nxlog
(Vaarandi & Niziński, 2013). Fluentd8 is finally preferred because of available plugins
for BigData, the possibility to develop custom plugin in Ruby and the compatibility with
MongoDb.

8https://www.fluentd.org/

9

2
System Architecture

2.1 Design

The overall design of our solution is first introduced before entering into details in the
system architecture. The exposed design will help to have a better understanding of
our model on a functional point of view.

2.1.1 Hypothesis

To begin with, it is crucial to explicitly formulate the hypothesis upon our system is
designed.

The first and the most critical assumption is that the device must has continuous access
to Internet. This hypothesis seems realistic for embedded system in the healthcare
or the manufacturing sector. It is however more difficult to achieve in automotive or
aerospace industry. However, the expansion of technology such as LTE may allow
these industries to meet this requirement.

Hypothesis 2.1.1.1. The device has continuous access to the Internet.

While designing our system, we presume that embedded manufacturers try to reduce
the device manufacturing’s variable cost to benefit from economy of scale. Therefore,
our model tries to minimize the use of components such as secure memory, TPM
or HSM. Moreover, the instrumentation performance on the device is also taken into
account because a lost in performance may need to be compensate by a more efficient

10

processor or microcontroller.

Hypothesis 2.1.1.2. One of the major priority of embedded manufacturers is to reduce
the variable cost of embedded device to leverage economy of scale.

The generation of the CFG and its analyze are also considered as a obstacle that may
prevent industry to consider our system. The C-FLAT model was implemented and
tested on relatively simple application therefore this aspect was not taken into account.
First, the CFG’s generation may be problematic because of specific instruction set
architecture (TriCore, MSP, PowerPC, ARM etc...). Moreover, feature such as function
pointer is also a challenge for establishing the CFG (Xu et al., 2010; Flake, 2002).
Second, if the CFG to be attested is too large, it may be impossible to calculate
every path in it as the complexity of such computation is NP-Complete (Thorelli, 1966;
Simões, 2009).
Finally, the measurement of the CFG must exactly match the measurement done in
the device, i.e. each basic block’s labeling must the same in the device and in the
measurement engine of the attestation server.

Hypothesis 2.1.1.3. The generation of the CFG is not viable when considering the
system’s deployment in the industry.

Wealso assume that such advanced attestationmodel will be adopted in the casewhere
the embedded device’s safety is a priority. This may be for example a device monitoring
the insulin level, a manufacturing machine, a radiography device or an actuator in a
vehicle. The second priority after safety is often the device’s performance. As an
instance, a loss in performance may induce loss in productivity for a manufacturing
machine or a delay in response time for an actuator.
Some IoT device focused on security such as smart lock may also benefit from our
approach. However these tyoe of devices are still marginal and do not arise a strong
business matter such as in the automotive, healthcare or manufacturing field.

Hypothesis 2.1.1.4. The device security is often a concern among embedded device
that needs high level of safety. The security design must although limits its impact of
the device performance.

2.1.2 System Overview

The Control Flow Anomaly Detection based upon Static Instrumentation (CF-ADSI)
system is developed with the following goals:

11

• Detect anomaly in the binary execution flow

• Have a minimal impact on the device performance

• Do not depend on the control flow graph

These requirements lead to 2 main concepts. On one hand, the hash computation is
exported to a trusted cloud as it represents 80% of the C-FLAT overhead (Abera et al.,
2016). By trusted cloud, we implies that the hash computation or its results cannot be
tampered by the cloud provider environment (another application, operating system
etc...). On the other hand, anomaly detection in the execution flow will be preformed
by Big Data analysis framework on resulting CFG attestation.

The system design is composed of 3 components: devices, servers in a trusted cloud
and a Big Data analytic framework (Figure 2.1).

Figure 2.1: CF-ADSI Overall Design

Device

The device is divided in 2 parts: the instrumented binary and a communication program.
This division is not fundamentally necessary, but this allows us to easily switch from
one instrumentation toolkit to another if needed.

The binary is instrumented in order to retrieve basic block identifier which can
be the basic block’s starting address or an arbitrary identifier defined during the
instrumentation. The basic block identifier is then placed into a shared memory space.
The communication program reads each identifier inserted into the shared memory

12

and forward it to the SGX cloud server.

The instrumented binary and the communication program must also be synchronized
by mutex, lockfree queue etc. This adds a significant overhead that will be measured
at a late stage in this paper. Nevertheless, the communication stack can also be
implemented during the binary instrumentation, thus eliminating overhead related to
the I/O synchronization in shared memory.

SGX Cloud Server

The server in the SGX cloud make the transition between the device and the Big Data
framework as well as doing the hash computation. The SGX enabled cloud allows
to ensure that the hash calculation is not tempered by creating enclaves. Enclave
have their own execution space protected at the CPU level and specific instructions
are implemented in the processor to communicate with enclave. Therefore, it is not
possible to temper or access information belonging to an enclave even if the operating
system of the cloud provider is corrupted 1.

Basic block identifiers are received from the device and then passed to an enclave
by using the SGX library API. The enclave compute a new hash with the basic block
identifiers and update the CFG attestation. This report is then logged in the operating
file system. A log collection deamon is used in every SGX cloud server to gather logs
in our Big Data framework.

Big Data Framework

Logs are then analyzed in a Big Data framework composed of a distributed database
or storage and an Big Data analytic engine. As presented in the literature review, there
is a vast choice of solution to build such a system. Our Big Data framework is using
MongoDB as a distributed database and Apache Spark as an analytic engine as stated
in the literature review (see section 1.3.2).

2.2 Device Application

The section details the implementation phase of the device in the CF-ADSI model.
1https://software.intel.com/sgx

13

https://software.intel.com/sgx

2.2.1 PEBIL Instrumentation

According to our design, the static instrumentation methods is chosen to limit
performance overhead in the device. The PEBIL toolkit offered by Laurenzano et al. is
prefered because of the small overhead and the possibility to easily modify the toolkit
if needed (Laurenzano et al., 2010).

The static instrumentation implemented in the PEBIL toolkit follows the same
framework as the DynInsthttps://www.dyninst.org/ toolkit. First, the control flow
graph is analyzed to identify every methods in the binary. Then, the beginning of each
methods is rewritten with a jump call to a new section. Indeed, one of the biggest
challenge in static instrumentation is to have the required space to insert assembly
code. Therefore, the entire method is rewritten into a new section2 to insert assembly
code of arbitrary length.
Classic static instrumentation toolkit such as DynInst allows only to insert
instrumentation function in the binary. This is often done by adding a call instruction
during the method’s rewriting. However, this method induce a stronger overhead
because of the context switch overhead, i.e. the protection of memory stack and
CPU’s registers. Nonetheless, the PEBIL toolkit offers us to write custom assembly
codes and insert them directly during the method’s rewriting, thus limiting the overhead
related to context switch.

In Figure 2.2 and 2.3, a simple example is presented to give more substance to our
explanation. The assembly code of the function named ”f1” is straightforward. The
function ”f1” starts at the address 0x004008f7 and does nothing as indicated by the
”nop” instruction. During the instrumentation process, the beginning of the ”f1” function
is first rewritten with a jump instruction (in yellow) to a new section. Then the ”f1”
function’s assembly code is copied at the address 0x948044 into the new section
(in red). This allows use to insert assembly code just before the ”ret” instruction.
From address 0x0094804a to 0x0094807d (in green), we use PEBIL to directly insert
custom assembly code without using an instrumentation function. However, at address
0x0094807f (in blue), we use an instrumentation function. Instrumentation function
is constituted to a first jump to the address 0x00949175 (in blue), and then a library
function that we have defined is called. Finally, we return to the ”f1” function by a jump
to the address 0x00948084 (in red).

2refers to binary section such as .txt, .data or .rodata

14

https://www.dyninst.org/

Figure 2.2: Assembly code before instrumentation

Figure 2.3: Assembly code after instrumentation with the PEBIL toolkit

The PEBIL toolkit is used to achieve the following instrumentation:

• Retrieve basic block starting address

• Write retrieved addresses into the shared memory

15

• Detect the start and end of a loop

The collection of basic block starting address and the loop detection are done with
custom assembly code directly injected into the binary. However, an instrumentation
function is used to write into the shared memory because we used a loockfree queue
from the boost library. It is however possible but more complicated to use the boost API
directly by inserting custom assembly code.

2.2.2 Shared Memory and Communication Program

The shared memory space is set up by the instrumented device in instrumentation
function at start up. The boost library API is used to create and manage the
shared memory. The synchronization between the instrumented application and the
communication program is done by using a lockfree queue from the boost library. The
communication program retrieves the basic block starting address in the queue and
creates a new Google Protobuf3 message to be send to the SGX cloud server. The
queue’s fetching and themessage sending is done in separate thread to limit overhead.

2.3 SGX Cloud Server

The server’s implementation is focused on its functionality more than its security. The
hash calculation is run in an SGX enclave but security on other part is overlooked. For
example, the network stack or the logging function may be vulnerable.

2.3.1 Untrusted Application

The untrusted application is in charge of receiving basic block starting address from
devices. Devices are given a distinct ID in order to compute a distinct CFG attestation
for each device. Basic block starting addresses are received in a Google Protobuf4
message and then passed to the enclave through the Intel SGX API5.
The Intel SGX library does not provide I/O library for enclaves. Therefore, CFG
attestation is also written in the log file by the untrusted application.

2.3.2 Enclave

The enclave retrieves basic block starting address from through the SGX API. It then
computes the new hash given the current hash and the retrieved address. The Intel

3https://developers.google.com/protocol-buffers/
4https://developers.google.com/protocol-buffers/
5https://software.intel.com/en-us/sgx-sdk-dev-reference

16

https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://software.intel.com/en-us/sgx-sdk-dev-reference

SGX Integrated Performance Primitive Library6 (IPP) is used to compute the hash as
efficiently as possible. The new CFG attestation is then generated and sent to the
untrusted application to be written in the log file.
As in the C-FLAT model, a new hash instance is created when a loop is entered.
However, contrary to the C-FLATmodel, only the current hash7 is logged to be analyzed
by the Big Data framework. The complete CFG attestation (see Figure 1.2) can also be
logged to perform a more detailed analysis. Along side to the current hash, the current
time and the associated device id is logged.

2.3.3 Log File Collection

A fluentd8 deamon is executed on each server to gather information from the log file
to our distributed database. A custom parsing plugin is developed to parse the log file.
The current time, the device id and the current hash are thus sent to the distributed
MongoDB database.

2.4 Big Data Framework

The implemented Big Data framework is relatively simple and is divided into 2
components: a distributed database and an Big Data analytic engine.

2.4.1 Distributed Database

As explained in the literature review and the design, MongoDB is chosen to perform
real-time analysis. MongoDB is a NoSQL database, i.e. it doesn’t use SQL9 and do
not need to have predefined layout such as table. Instead, MongoDB store data as
BSON10 document. If several BSON document has the same structure, i.e. same field,
then they are organized as collection. Therefore, the data structure is unknown until
entries are added to the database. Figure 2.4 gives an example of an entry in the
MongoDb database.

1 > db.hash.findOne()
2 {
3 "_id" : ObjectId("5b949dc55ff9874fe00932cf"),
4 "id" : "2",

6https://software.intel.com/en-us/ipp-crypto-reference
7corresponding to the cfa_quote in Figure 1.2
8https://www.fluentd.org/
9strutured query language
10binary JSON

17

https://software.intel.com/en-us/ipp-crypto-reference
https://www.fluentd.org/

5 "hash" : "efe3f94f2777c7b6c535eb3bcc39ac4ecdf782f81b4b0124a253fe851eee2ab2",
6 "time" : ISODate("2018-09-09T04:12:43Z")
7 }

Figure 2.4: MongoDb Entry in the CF-ADSI model

2.4.2 Analytic Engine

The analytic engine in our implementation is Apache Spark11. It easily integrates with
MongoDB and has a Python2 and Python3 API named PySpark. Python is favored
because it is one of the most common language in the Big Data field with Scala and
allows to quickly elaborate prototype.

The anomaly detection algorithm used is rather simple:

• Calculate the occurrence frequency of each hash in the MongoDB database

• Detect a hash as unusual if the occurrence frequency falls under a arbitrary
threshold

For example, in the Figure 2.6 the hash ’29 a9 45 c7 d4 9c 6f c4 2c a1 b8 9b 65 b1 71
21 e2 19 e0 6b 01 f6 a7 98 e5 d2 24 ff 3b 59 bb 8f’ as the lowest occurrence frequency.
If this frequency fall behind the threshold, then the device associated with this hash is
considered to have an unusual execution flow. This can be due to an attack such as
a ROP or a due to a bug. This unusual execution flow can also be an extremely rare
legit execution flow, such as a function that is almost never used. Therefore, further
investigation is needed to determine the anomaly’s cause.

1 Row(hash='06498546305fd6077c1d293f911e1c092f320b7fbe8deaf14a85397ca72da00f', count=1114)
2 Row(hash='c26f95bbe71d097e592892901bac8dd2c266b0a003c173ef7fff716469c281a3', count=101)
3 Row(hash='f10732db93211adce1cf56560ca28ba751aba3ec29887f1c80429d432fe7bc97', count=1114)
4 Row(hash='4a74c9e514229bf2c272b2fa5d5c1151469c9d0ec9d2e9175dc59b37bee2dbe4', count=100)
5 Row(hash='8935c115c8b9fabcba28c31da8d4a2d6691152ff416ad9ad2ad7ccdedd389fd6', count=1114)
6 Row(hash='2fb1c65bd38fdf901675b4f5cd744305ad3821f92f9f4d573bc1807f03b40eea', count=100)
7 Row(hash='1a561e9c398a2bd323b26dbc85345ee131fffdc9aa0806601b65db6197ad4809', count=1215)
8 Row(hash='7fcaf9a1e8339469ab3e20b5579cff714644a9f72fc099efec98cd22bbce451b', count=100)
9 Row(hash='c14bd28cc2c4a81beca82905c47a9d8a3f844bb060c12dac12f4c7e596842a8b', count=100)
10 Row(hash='4653e23a86c04491bf105b1af6926afa68f838f22f48981483ccff19c32470d4', count=100)
11 Row(hash='efe3f94f2777c7b6c535eb3bcc39ac4ecdf782f81b4b0124a253fe851eee2ab2', count=101)
12 Row(hash='de5b6959ea27850fa396a4b6f7bbc6022c95e5a7abc3e1b33091c472abad0d8e', count=101)
13 Row(hash='32844033257d93f3a43bc1248bd1bdb681ef5cfcb2e493e2808fc0a0595ed133', count=101)
14 Row(hash='1a41260da07beeb370afb2a6383bead9f8ca8edc0e8cb785a06c6c1d0e257c69', count=101)
15 Row(hash='6253af85d391043ae73855ab2271dd955a72eebb3c15a0a0f61f8f805b891817', count=100)
16 Row(hash='b4dfe037d5b71d71a5077837acda6cb2bd91a205ad712c7ca3b8dfd1751e13d8', count=101)
17 Row(hash='78ff36bd0cf957dc35a82eff5982add5e9d28312e87f0bb7bbbcf9e4df8d33a5', count=101)
18 Row(hash='1fb4ad0eb72499930bfceba91640c42e485b6cb7b4ec45d9fd7768216f6683fc', count=101)
19 Row(hash='6963319dd9cdcca8b6770d6da1b349f3f3c604e042481fba0724adc2ca6e5848', count=100)

11http://spark.apache.org/

18

20 Row(hash='2add7da9d4c6ea092d9f6273f874657a43f6bf9fd62af8d26450fe9f594c2879', count=1114)
21 Row(hash='29a945c7d49c6fc42ca1b89b65b17121e219e06b01f6a798e5d224ff3b59bb8f', count=1)

Figure 2.5: Number of occurrence for each distinct hash retrieved by a GroupBy aggregation
in Apache Spark

1 ('29a945c7d49c6fc42ca1b89b65b17121e219e06b01f6a798e5d224ff3b59bb8f', 0.0001392757660167131)
2 ('4a74c9e514229bf2c272b2fa5d5c1151469c9d0ec9d2e9175dc59b37bee2dbe4', 0.013927576601671309)
3 ('6963319dd9cdcca8b6770d6da1b349f3f3c604e042481fba0724adc2ca6e5848', 0.013927576601671309)
4 ('2fb1c65bd38fdf901675b4f5cd744305ad3821f92f9f4d573bc1807f03b40eea', 0.013927576601671309)
5 ('7fcaf9a1e8339469ab3e20b5579cff714644a9f72fc099efec98cd22bbce451b', 0.013927576601671309)
6 ('c14bd28cc2c4a81beca82905c47a9d8a3f844bb060c12dac12f4c7e596842a8b', 0.013927576601671309)
7 ('6253af85d391043ae73855ab2271dd955a72eebb3c15a0a0f61f8f805b891817', 0.013927576601671309)
8 ('4653e23a86c04491bf105b1af6926afa68f838f22f48981483ccff19c32470d4', 0.013927576601671309)
9 ('de5b6959ea27850fa396a4b6f7bbc6022c95e5a7abc3e1b33091c472abad0d8e', 0.014066852367688022)
10 ('32844033257d93f3a43bc1248bd1bdb681ef5cfcb2e493e2808fc0a0595ed133', 0.014066852367688022)
11 ('1a41260da07beeb370afb2a6383bead9f8ca8edc0e8cb785a06c6c1d0e257c69', 0.014066852367688022)
12 ('1fb4ad0eb72499930bfceba91640c42e485b6cb7b4ec45d9fd7768216f6683fc', 0.014066852367688022)
13 ('efe3f94f2777c7b6c535eb3bcc39ac4ecdf782f81b4b0124a253fe851eee2ab2', 0.014066852367688022)
14 ('b4dfe037d5b71d71a5077837acda6cb2bd91a205ad712c7ca3b8dfd1751e13d8', 0.014066852367688022)
15 ('c26f95bbe71d097e592892901bac8dd2c266b0a003c173ef7fff716469c281a3', 0.014066852367688022)
16 ('78ff36bd0cf957dc35a82eff5982add5e9d28312e87f0bb7bbbcf9e4df8d33a5', 0.014066852367688022)
17 ('8935c115c8b9fabcba28c31da8d4a2d6691152ff416ad9ad2ad7ccdedd389fd6', 0.1551532033426184)
18 ('f10732db93211adce1cf56560ca28ba751aba3ec29887f1c80429d432fe7bc97', 0.1551532033426184)
19 ('2add7da9d4c6ea092d9f6273f874657a43f6bf9fd62af8d26450fe9f594c2879', 0.1551532033426184)
20 ('06498546305fd6077c1d293f911e1c092f320b7fbe8deaf14a85397ca72da00f', 0.1551532033426184)
21 ('1a561e9c398a2bd323b26dbc85345ee131fffdc9aa0806601b65db6197ad4809', 0.1692200557103064)

Figure 2.6: Frequency of occurrence for each distinct hash

19

3
Evaluation

Finally, this section details the performance’s impact of the CF-ADSI model on the
device. The Big Data analytic algorithm performance will also be analyzed to evaluate
the viability of our log anomaly detection on larger data set. The hardware and software
environment used in the evaluation are specified in Table B.1 and B.2 of the Appendix
B.

3.1 Device Performance

The hash calculation time and the instrumentation overhead is first needed to compare
the performance of CF-ADSI model to the C-FLAT model. Each time will be expressed
as ”time by basic block” to limit bias on measured time. The measurement below
1 million basic block are discarded because the impact of the initialization function
(shared memory etc...) is too significant.

As seen in the Figure 3.1, the overhead for a basic block in the CF-ADSI model is
stabilizing between 1.20 and 1.30us. The hash calculation time on the SGX cloud
server is however stabilizing at 4.65us by basic block. This means that we have actually
saved 4.65us for each basic block by exporting the hash calculation to the cloud. We
supposed that the hash calculation on the application and in the SGX enclave is
the same as the CPU performance are very close on both environment. The CF-
ADSI model has thus approximately 70% less overhead on the device than the C-FLAT.

20

Figure 3.1: Overhead by basic block in the device application

Although this performance gain, the CF-ADSI instrumentation still induces an overhead
into the device. The CF-ADSI overhead is composed by: 5% of context switch and
custom assembly instruction, 45% of I/O and synchronization in the lockfree boost
queue and 50% to create and send the Google Protobuf message to the SGX cloud
server (Figure 3.2).

Figure 3.2: Composition of the overhead in the device

The overhead of CF-ADSI on a simple application (see Annexe A) is around 1000%
to 1500% (Figure 3.3). This overhead is however related to the basic block density in
the binary. For this application, the average time to execute a basic block is between
1 and 1.5ns without instrumentation. The overhead expressed in percentage is thus

21

highly dependent on the application.

Figure 3.3: Overhead in the device application (in %)

3.2 Analytic Engine Performance

The performance of the analytic algorithm is measured to verify if such system can
scale for billion or trillion of device. As shown in the Figure 3.2, the analyze time is
linear and should thus be scalable.
The algorithm presented in this paper is however extremely simple and the analyze
complexity may change according to the algorithm or the Big Data framework used.
Further studies are definitely needed to confirm and/or improve the CF-ADSI from the
anomaly detection perspective.

22

Figure 3.4: Execution time of the analytic engine algorithm with Apache Spark

23

4
Conclusion

This paper brought together the control flow attestation, the SGX technology and the
log anomaly detection to design the CF-ADSI model. The CF-ADSI model is focused
on the device performance as well as reducing resource usage such as memory on
the embedded device. Moreover, CF-ADSI tackles a major limitation of the C-FLAT by
eliminating the analysis of the Control Flow Graph.

The design is divided into 3 components: instrumented devices, SGX servers and a Big
Data framework. The application’s instrumentation is done thanks to the PEBIL toolkit.
This toolkit offers a great flexibility by providing both instrumentation function and tools
to directly insert custom assembly code into the application’s binary. The SGX server
takes advantage of the SGX platform to securely perform the hash computation inside
enclaves. Therefore, CF-ADSI provides the same guarantees than using a TPM or
HSM module in the device. The real-time performance and the set-up easiness had
driven us to a Big Data framework founded upon MongoDB, a distributed database,
and Spark, an analytic engine.

The CF-ADSI evaluation shows up a dramatic gain in performance compare to the
C-FLAT model with approximately 70% less overhead. Nevertheless, the overhead is
still significant with an average overhead of 1 to 1.5us by basic block. The overhead
impact on a real-time embedded device is strongly dependent on the instrumented
function or application. Therefore, it is difficult to assert if the CF-ADSI model can be
deployed in a production environment.
However, the implemented analytic algorithm on our Big Data framework displays a
linear complexity. Although simplistic, this algorithm should scales well with a larger
number of device.

24

Nonetheless, our measurement was restrained to our testing environment and the
CF-ADSI was not confronted to a strong real-time constraint, therefore limiting us to
assess the viability of CF-ADSI for a real-time embedded system.
Moreover, even if the needed CFG during the instrumentation do not have to be
as detailed as in the C-FLAT model, its generation may be a major limitation for
uncommon instruction set architectures.
The PEBIL toolkit is also limiting the scope of our implementation by supporting only
x86 architecture. Furthermore, PEBIL cannot instrument statically compiled executable
and therefore library call such as system call was not taken into account in the CFG
attestation.
Moreover, our implementation is far to be perfect on a security level. As an example,
the communication between the device and the SGX server was done in clear without
using SSL1. Thus, the CF-ADSI may include additional overhead in order to secure
the overall system.
The chosen Big Data framework may also not be the most adapted to implement log
anomaly detection. Other solutions may strongly improve performance and be more
suitable. Besides, the analytic algorithm used is extremely straightforward and is
surely not the most pertinent algorithm to perform the control flow anomaly detection.

This paper may be easily enlarged from the security to the passive monitoring field.
Indeed, other information may be collected using our method although our research
focused on retrieving information about the execution path. The CF-ADSI model can
thus be widen to a more general Anomaly Detection based upon Static Instrumentation
(ADSI) concept.
Scholarsmay also be interested to try other instrumentationmethods in order to improve
the device performance. Our design is especially useful in this case as the instrumented
binary and the communication layer are separated, thus limiting the code to be rewritten
by switching the instrumentation toolkit.
The impact of implementing standard security practices on the overall CF-ADSI system
may also be detailed. This will definitively help the industry to perceive this system as
a potential business solution.
Researchers in the Big Data field can as well provide their expertise to enhance the
framework used and to reframe the analytic algorithm used.

1secure sockets layer

25

A
Application Code

1 # inc lude <iostream >
2 # inc lude <t ime . h>
3 # inc lude < s t d l i b . h>
4 # inc lude <cs t r i ng >
5

6 vo id f1 () {
7 r e t u rn ;
8 }
9

10 vo id f2 (char * i npu t) {
11 char buf [8] ;
12 std : : memcpy(buf , input , s t r l e n (i npu t) * s i zeo f (char)) ;
13 r e t u rn ;
14 }
15

16 i n t main (i n t argc , char * argv []) {
17 s t r u c t t imespec t S t a r t ;
18 s t r u c t t imespec tEnd ;
19

20 c lock_get t ime (CLOCK_MONOTONIC, & t S t a r t) ;
21

22 i f (argc < 3) {
23 std : : cout << ” Please enter a number o f loop and a dummy inpu t ” <<

std : : endl ;
24 r e t u rn 0 ;
25 }
26

27 i n t nb_loop = a t o i (argv [1]) ;

26

28 f o r (i n t i = 0 ; i < nb_loop ; i ++)
29 f1 () ;
30

31 f2 (argv [2]) ;
32

33 c lock_get t ime (CLOCK_MONOTONIC, &tEnd) ;
34

35 double elapsed = (tEnd . tv_sec − t S t a r t . tv_sec) ;
36 elapsed += (tEnd . tv_nsec − t S t a r t . tv_nsec) / 1000000000.0;
37

38 std : : cout << ” Time taken : ” << elapsed << std : : endl ;
39 r e t u rn 0 ;
40 }

Figure A.1: Application code in C++

27

B
Test Environment

Device SGX Cloud Server Big Data Framework

Processor Intel(R) Core(TM)
i5-3470 @ 3.20GHz

Intel(R) Core(TM)
i5-7500 @ 3.40GHz

Intel(R) Core(TM)
i5-7500 @ 3.40GHz

OS Ubuntu 18.04.1 LTS Ubuntu 16.04.4 LTS Debian GNU/Linux 9.5
(Virtual Machine)

RAM 2Go
SWAP 10Go

Table B.1: Hardware Environment

28

Device SGX Cloud Server Big Data Framework
Boost Library 1.65.1 1.58.0
Google Protobuf 3.5.1 3.5.1
SGX SDK 2.3
Fluentd 1.2.2
MongoDB 4.0.0
Hadoop 2.7.7
Spark 2.3.1
mongo-spark-connector 2.11:2.3.0

Table B.2: List of library and software version

29

References

Abera, T., Asokan, N., Davi, L., Ekberg, J.-E., Nyman, T., Paverd, A., Sadeghi, A.-R.,

& Tsudik, G. (2016). C-flat: Control-flow attestation for embedded systems software.

Arunraj, N. S., Hable, R., Fernandes, M., Leidl, K., & Heig, M. (2017). Comparison of

supervised, semi-supervised and unsupervised learning methods in network intrusion

detection system (nids) application. AKWI.

Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage,

S., Koscher, K., Czeskis, A., Roesner, F., & Kohno, T. (2011). Comprehensive

experimental analyses of automotive attack surfaces. USENIX Security Symposium.

Flake, H. (2002). Graph-based binary analysis. Blackhat Conference.

Frank, M. (2018). Internet of babies – when baby monitors fail to be smart. SEC

Consult Vulnerability Lab and University of Applied Sciences Technikum Wien.

Gayou, S. (2018). Remote code execution on the smiths medical medfusion 4000.

Github.

30

Hunt, T. (2016). Controlling vehicle features of nissan leafs across the globe via

vulnerable apis.

Inoubli, W., Aridhi, S., Mezni, H., Maddouri, M., & Nguifo, E. (2018). A comparative

study on streaming frameworks for big data. 44th International Conference on Very

Large Data Base.

Kalan, M. (2015). Tutorial for operationalizing spark with mongodb.

Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T., Checkoway, S., McCoy,

D., Kantor, B., Anderson, D., & Hovav Shacham, S. S. (2010). Experimental security

analysis of a modern automobile. IEEE Symposium on Security and Privacy.

Kovelman, A. (2017). A remote attack on the bosch drivelog connector dongle. Article

by Argus Research Team.

Laurenzano, M. A., Tikir, M. M., & amd Allan Snavely, L. C. (2010). Pebil: Efficient

static binary instrumentation for linux. IEEE International Symposium on Performance

Analysis of Systems & Software.

Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Reddi,

V. J., & Hazelwood, K. (2005). Pin: Building customized program analysis tools with

dynamic instrumentation. Proceedings of the 2005 ACM SIGPLAN conference on

Programming language design and implementation.

Miller, C. & Valasek, C. (2010). Remote exploitation of an unaltered passenger vehicle.

31

Omar, S., Ngadi, A., & Jebur, H. H. (2013). Machine learning techniques for anomaly

detection: An overview. International Journal of Computer Applications.

Rushanan, M., Rubin, A. D., Kune, D. F., & Swanson, C. M. (2014). Sok: Security and

privacy in implantable medical devices and body area networks. IEEE Security and

Privacy.

S, R. K. & Mary, R. R. (2017). Comparative performance analysis of various nosql

databases: Mongodb, cassandra and hbase on yahoo cloud server. Imperial Journal

of Interdisciplinary Research.

Simões, R. (2009). Apac: An exact algorithm for retrieving cycles and paths in all

kinds of graph. Polytechnical Studies Review.

Singh, P. & Panda, S. (2018). Threat modeling for automotives. International Research

Journal of Engineering and Technology.

Thorelli, L.-E. (1966). An Algorithm for Computing All Paths in a Graph. Technical

report, Scientific Notes - University of Stockholm.

Vaarandi, R. & Niziński, P. (2013). A Comparative Analysis of Open-Source Log

Management Solutions for Security Monitoring and Network Forensics. Technical

report, NATO Cooperative Cyber Defence Centre of Excellence.

32

Wang, S., Wang, P., & Wu, D. (2016). Uroboros: Instrumenting stripped binaries

with static reassembling. IEEE 23rd International Conference on Software Analysis,

Evolution, and Reengineering.

Xu, L., Sun, F., & Su, Z. (2010). Constructing precise control flow graphs from binaries.

Zonenberg, A. (2016). Remotely disabling a wireless burglar alarm.

33

34

	Introduction
	Literature Review
	Control Flow Attestation
	Design
	Control-Flow Attestation Report

	Binary Instrumentation
	Dynamic Binary Instrumentation
	Static Binary Instrumentation

	Anomaly Detection
	Supervised and Unsupervised Anomaly Detection
	Big Data Framework
	Log Data Collection

	System Architecture
	Design
	Hypothesis
	System Overview

	Device Application
	PEBIL Instrumentation
	Shared Memory and Communication Program

	SGX Cloud Server
	Untrusted Application
	Enclave
	Log File Collection

	Big Data Framework
	Distributed Database
	Analytic Engine

	Evaluation
	Device Performance
	Analytic Engine Performance

	Conclusion
	Application Code
	Test Environment
	References

